
Juliana Viola

Yale University

May 5, 2022

Groups Generated by Automata
An Undergraduate-Level Exposition

Contents

1 Introduction 1

2 Group Theory Background 1

3 Automata Theory Background 2

4 Group Theory Meets Automata Theory 7

4.1 A First Example . 7

4.2 A Classification Problem . 8

5 The Word Problem 14

6 Acknowledgements 15

References 15

1 Introduction

During my time at Yale, my favorite course was CPSC 460 (Automata Theory taught by An-

drew Bridy), and I knew I wanted to have my senior project somehow relate to automata theory.

Last semester, I took MATH 350 (Introduction to Abstract Algebra), which exposed me to the

basics of group theory and ring theory. Given my passion for automata theory and the ubiquity

of group theory, I want to look at their intersection this semester for my senior project.

In my preliminary readings on the intersection between group theory and automata theory, I

found most of the material to be quite dense and not particularly digestible for undergraduate

readers [1, 3, 4]. My goal for this project was to write an exposition that explores the basics of

groups generated by automata. I aimed to write in an accessible way so that an undergraduate

student with exposure to both automata theory and group theory can follow along without too

much extra legwork.

2 Group Theory Background

Recall the definition of a group from group theory.

Definition 2.1. A group is a set G along with a binary operation ⋆ obeying the following

properties:

1

1. Associativity: For all x, y, z ∈ G, (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z).

2. Existence of an identity element: There exists some element e ∈ G called the identity such

that for all x ∈ G, e ⋆ x = x ⋆ e = x.

3. Existence of inverses: For every element x ∈ G, there exists an element x−1 ∈ G which is

the inverse of x, such that x ⋆ x−1 = x−1 ⋆ x = e.

Oftentimes, it can be useful to think about how a group interacts with another set. A classic

example involves the symmetric group Sn. Formally, the elements of the symmetric group are

permutations on the set {1, 2, 3, . . . , n}; the group elements are not 1, 2, 3, . . . , n. With that

being said, it’s natural to consider how an element of Sn acts on the integers 1 through n. For

instance, given the group S5 and the permutation σ = (123)(45), we see that σ maps 1 to 2, 2 to

3, 3 to 1, 4 to 5, and 5 to 4. With this intuition in mind, we can formally define group actions,

starting with left group actions.

Definition 2.2. Given a group G and a set A, a left group action is a map from G×A to A.

Each pair (g, a) for all g ∈ G and all a ∈ A is mapped to the output g · a ∈ A. The map satisfies

the following conditions:

1. For all g1, g2 ∈ G and all a ∈ A, g1 · (g2 · a) = (g1 · g2) · a

2. For all a ∈ A, e · a = a (where e is the identity in G)

We define right groups actions similarly:

Definition 2.3. Given a group G and a set A, a right group action is a map from A×G to

A. Each pair (a, g) for all g ∈ G and all a ∈ A is mapped to the output a · g ∈ A. The map the

satisfies following conditions:

1. For all g1, g2 ∈ G and all a ∈ A, (a · g1) · g2 = a · (g1 · g2)

2. For all a ∈ A, a · e = a

Finally, we introduce the idea of generating a group.

Definition 2.4. Given a group G and some subset S ⊆ G, we say that S generates G if any

element in G can be expressed as a product of the elements of S and their inverses. We denote

generation using the notation G = ⟨S⟩.

3 Automata Theory Background

Definition 3.1. An alphabet is a finite set of characters.

If we call our alphabet Σ, then we can introduce the idea of words (both finite in length and

infinite in length).

Definition 3.2. Given an alphabet Σ, Σ∗ is the set of all finite-length words over Σ.

2

Definition 3.3. Given an alphabet Σ, Σω is the set of all (one-sided) infinite sequences over

Σ. That is,

Σω = {x1x2x3x4 . . . : xi ∈ Σ for all i}

Recall from automata theory that a deterministic finite automata (DFA) takes a word as an

input and outputs a state: either accept or reject. Transducers are different in that they take

words as input and output other words.

Definition 3.4. A finite state transducer (FST) is a 6-tuple (Q,Σ, δ, q0,∆, λ) where:

• Q is a set of states

• Σ is the input alphabet

• δ : Q× Σ → Q is a transition function

• q0 is the initial state

• ∆ is the output alphabet

• λ : Q× Σ → ∆∗ is an output function

The computation works as follows. The machine reads in a word w = x1x2 . . . xn ∈ Σ∗. The

machine proceeds deterministically through a sequence of states q0, q1, q2, . . . , qn and outputs a

word y1y2 . . . yn ∈ ∆∗ where:

1. δ(qi, xi+1) = qi+1 for all i

2. λ(qi, xi+1) = yi for all i. (Descriptively, each yi is a word in ∆∗.)

With this definition in mind, we turn to a particular type of transducer: the Mealy machine.

Definition 3.5. A Mealy machine is a particular type of FST where every output is exactly

one letter.

For an example of a Mealy machine, see Figure 1.

Although we often think of Mealy machines as taking in words of finite length as input, there’s

no reason we can’t extend a Mealy machine to act on (one-sided) sequences of infinite length,

too. So, instead of reading in words from Σ∗ and outputting words from ∆∗, a Mealy machine

can actually read in words from Σ∗ ∪ Σω and output words from ∆∗ ∪∆ω.

Consider two machines that have the same input and output languages, i.e., suppose we have

two machines, M = (Q,Σ, δ, q0,Σ, λ) and N = (R,Σ, α, r0,Σ, β). We can define a new Mealy

machine K = MN which is the composition of M and N as follows:

• Let Q×R be the state set of K

• Let (q0, r0) be the initial state of K

3

q0 q1

1/0

0/1

0/0, 1/1

Figure 1: A basic Mealy machine. The notation i/o next to each transition signifies the input
and output symbols. Explicitly, our initial state is q0 (indicated by the incoming arrow),
and we have two states total: q0 and q1. We have the same input and output alphabet:
{0, 1}. If we let δ be our transition function and λ be our output function, then we can
explicitly define each function. For δ: δ(q0, 0) = q1; δ(q0, 1) = q0; δ(q1, 0) = q1; δ(q1, 1) = q1.
For λ: λ(q0, 0) = 1; λ(q0, 1) = 0; λ(q1, 0) = 0; λ(q1, 1) = 1. This machine can be viewed as
performing addition by 1 in binary, if we think of binary numbers in reverse (i.e., if we read
them from right to left). For example, consider the input 11001, which will be transformed
into 00101. 11001 read right to left is 19 in decimal; 00101 read right to left is 20 = 19 + 1
in decimal.

• Define the transition function ψ : (Q× R)× Σ → Q× R as follows: for each q ∈ Q, each

r ∈ R, and each x ∈ Σ, set ψ((q, r), x) = (δ(q, x), α(r, λ(q, x)))

• Define the output function ω : (Q × R) × Σ → Σ as follows: for each q ∈ Q, each r ∈ R,

and each x ∈ Σ, set ω((q, r), x) = β(r, λ(q, x))

Proposition 3.1. Consider any word w ∈ Σ∗ ∪ Σω. Suppose that given input w, M outputs

the word u ∈ Σ∗ ∪ Σω, and then u is fed into N , which outputs the word v ∈ Σ∗ ∪ Σω. If w is

fed into K = MN , then the output is v.

Proof. Let v′ be the word that K outputs upon receiving the input w. We need to show that

v′ = v. Suppose w has length n, which may be infinite. It’s enough to show that for all i ≤ n,

v′i = vi (that is, v and v′ are identical at every index). We proceed by induction on i.

Base case: Let i = 1, and let K be in state (q0, r0). Suppose δ(q0, w1) = q1, λ(q0, w1) = u1,

α(r0, u1) = r1, and β(r0, u1) = v1. By construction, v′1 = ω((q0, r0), w1) = β(r0, λ(q0, w1)) =

β(r0, u1) = v1. Thus v′ and v begin with the same symbol. Also note that the machine is in

state (q1, r1) because ψ((q0, r0), w1) = (δ(q0, w1), α(r0, λ(q0, w1))) = (q1, α(r0, u1)) = (q1, r1).

Inductive hypothesis: v′i = vi for all i ≤ k < n. Furthermore, after processing v1 . . . vk, K is in

state (qk, rk).

Inductive step: Assume the inductive hypothesis to be true. We need to show that v′k+1 =

vk+1, and after processing v1 . . . vk+1, K is in state (qk+1, rk+1). We have δ(qk, wk+1) = qk+1,

λ(qk, wk+1) = uk+1, α(rk, uk+1) = rk+1, and β(rk, uk+1) = vk+1. By construction,

v′k+1 = ω((qk, rk), wk+1) = β(rk, λ(qk, wk+1)) = β(rk, uk+1) = vk+1.

Thus v′k+1 = vk+1, so v
′
1 . . . v

′
k+1 = v1 . . . vk+1. Additionally, the machine is in state (qk+1, rk+1)

4

because ψ((qk, rk), wk+1) = (δ(qk, wk+1), α(rk, λ(qk, wk+1))) = (qk+1, α(rk, uk+1)) = (qk+1, rk+1).

Therefore, by induction, v = v′.

We can also consider what it would mean for a Mealy machine (with the same input and output

alphabets) to be invertible. First, though, we need to define what it means for a Mealy machine

to be complete with respect to input and complete with respect to output [1].

Definition 3.6. A Mealy machine is complete with respect to input if for each of its states

and for each letter x in its input alphabet, there is a unique outgoing edge with input x.

Definition 3.7. A Mealy machine is complete with respect to output if for each of its

states and for each letter y in its output alphabet, there is a unique outgoing edge with output

y.

Definition 3.8. A Mealy machine that has the same input and output alphabets is invertible

if it is complete with respect to both input and output.

Thus, invertibility is a local property in the sense that a machine is invertible if and only if each

one of its states is invertible. For an example of invertible and non-invertible Mealy machines,

see Figures 2 and 3, respectively.

q0

0/1, 1/0

Figure 2: A simple invertible Mealy machine that takes the one’s complement of the inputted
word – that is, it flips each bit in the inputted word. For example, the word 10110 would
be transformed into 01001.

q0

0/1, 1/1

Figure 3: A simple invertible Mealy machine that’s not invertible – the output function maps
both (q0, 0) and (q0, 1) to 1. Any word of length ℓ would be transformed into a sequence of
ℓ consecutive ones. Intuitively, it’s clear that the machine is not invertible because given an
outputted word, one cannot deduce the input.

To take the inverse of a Mealy machine A = (Q,Σ, δ, q0,Σ, λ), where δ maps from Q × Σ to Q

and λ maps from Q× Σ to Σ, we use the following procedure:

1. Let R represent the states of A−1. Define R = {q−1
i : qi ∈ Q}.

5

2. Let q−1
0 be the initial state of A−1.

3. Let the input and output alphabet for A−1 be Σ.

4. Define the transition function ϵ : R × Σ → R as follows: for each qi and each x where

δ(qi, x) = qj and λ(qi, x) = y, we set ϵ(q−1
i , y) = q−1

j .

5. Define the output function µ : R × Σ → Σ as follows: for each qi and each x where

λ(qi, x) = y, we set µ(q−1
i , y) = x.

Proposition 3.2. Let B = AA−1 and let C = A−1A. Then B and C are both trivial machines.

That is, given any input word w ∈ Σ∗ ∪ Σω, the output of both B and C is w.

Proof. Using machine composition as described previously, we define the following functions:

• The transition function for B is ψB : (Q×R)× Σ → Q×R. For each q ∈ Q, each r ∈ R,

and each x ∈ Σ, set ψB((q, r), x) = (δ(q, x), ϵ(r, λ(q, x)))

• The output function for B is ωB : (Q×R)×Σ → Σ. For each q ∈ Q, each r ∈ R, and each

x ∈ Σ, set ωB((q, r), x) = µ(r, λ(q, x))

• The transition function for C is ψC : (R ×Q)× Σ → R ×Q. For each r ∈ R, each q ∈ Q,

and each x ∈ Σ, set ψC((r, q), x) = (ϵ(r, x), δ(q, µ(r, x)))

• The output function for C is ωC : (R×Q)×Σ → Σ. For each r ∈ R, each q ∈ Q, and each

x ∈ Σ, set ωC((r, q), x) = λ(q, µ(r, x))

Let w′ be the word that B outputs upon receiving the input w. Similarly, let w′′ be the word

that C outputs upon receiving the input w. We need to show that w′′ = w′ = w. Suppose w has

length n, which may be infinite. We need to show that for all i ≤ n, w′′
i = w′

i = wi. We proceed

by induction on i.

Base case: Let i = 1, let B be in state (q0, q
−1
0), and let C be in state (q−1

0 , q0). We start by prov-

ing the base case for B. Suppose y1 = λ(q0, w1). By construction, w1 = µ(q−1
0 , y1). Then w′

1 =

ωB((q0, q
−1
0), w1) = µ(q−1

0 , λ(q0, w1)) = µ(q−1
0 , y1) = w1. Thus w and w′ both start with the same

symbol. Also, B is in state (q1, q
−1
1) because ψB((q0, q

−1
0), w1) = (δ(q0, w1), ϵ(q

−1
0 , λ(q0, w1))) =

(q1, ϵ(q
−1
0 , y1)) = (q1, q

−1
1).

Similarly, to prove the base case for C, suppose z1 = µ(q−1
0 , w1). By construction, w1 =

λ(q0, z1). Then w′′
1 = ωC((q

−1
0 , q0), w1) = λ(q0, µ(q

−1
0 , w1)) = λ(q0, z1) = w1. Thus w′′ and

w begin with the same symbol. Also, C is in state (q−1
1 , q1) because ψC((q

−1
0 , q0), w1) =

(ϵ(q−1
0 , w1), δ(q0, µ(q

−1
0 , w1))) = (q−1

1 , δ(q0, z1)) = (q−1
1 , q1)

Inductive hypothesis: w′′
i = w′

i = wi for all i ≤ k < n. Furthermore, after processing w1 . . . wk,

B is in state (qk, q
−1
k) and C is in state (q−1

k , qk).

Inductive step: Assume the inductive hypothesis to be true. We need to show that w′′
k+1 =

w′
k+1 = wk+1, and after processing w1 . . . wk+1, B is in state (qk+1, q

−1
k+1) and C is in state

6

(q−1
k+1, qk+1).

Assume B is in state (qk, q
−1
k), and C is in state (q−1

k , qk). We will first show w′
k+1 = wk+1,

and then show that w′′
k+1 = wk+1. Suppose yk+1 = λ(qk, wk+1). By construction, wk+1 =

µ(q−1
k , yk+1). Then w′

k+1 = ωB((qk, q
−1
k), wk+1) = µ(q−1

k , λ(qk, wk+1)) = µ(q−1
k , yk+1) = wk+1.

Also, B is in state (qk+1, q
−1
k+1) because ψB((qk, q

−1
k), wk+1) = (δ(qk, wk+1), ϵ(q

−1
k , λ(qk, wk+1))) =

(qk+1, ϵ(q
−1
k , yk+1)) = (qk+1, q

−1
k+1).

We can show a similar result for C. Suppose zk+1 = µ(q−1
k , wk+1). By construction, wk+1 =

λ(qk, zk+1). Then w′′
k+1 = ωC((q

−1
k , qk), wk+1) = λ(qk, µ(q

−1
k , wk+1)) = λ(qk, zk+1) = wk+1.

Thus w′′ = w = wk+1. Also, C is in state (q−1
k+1, qk+1) because:

ψC((q
−1
k , qk), wk+1) = (ϵ(q−1

k , wk+1), δ(qk, µ(q
−1
k , wk+1))) = (q−1

k+1, δ(qk, zk+1)) = (q−1
k+1, qk+1).

Therefore, by induction, we’ve shown that B and C are both trivial machines, i.e., that A and

A−1 are inverses.

One final note on Mealy machines is that they can be reduced or minimized using an O(n log n)

algorithm described by Hopcroft [5]. This algorithm takes a machine as input and outputs an

equivalent machine that is guaranteed to have the minimum number of states possible. I won’t

describe the algorithm in this exposition or prove its correctness, but I mention this fact because

it will be useful later on when we encounter the word problem.

4 Group Theory Meets Automata Theory

4.1 A First Example

If a Mealy machine is invertible, we can consider what it would mean to construct a group from

the machine. Given a machine with n states q0 through qn−1, we can consider n copies A0

through An−1 of the machine, where the initial state of copy Ai is qi. (That is, we are consider-

ing every state as a possible initial state of the machine.) These copies are the generators of the

group. We define the binary operation of an automata group as the composition of machines, as

defined in the previous section. Since automata encode functions from one language to another,

we say that two elements in an automata group are equal if they induce the same function on

input words.

For example, consider the Mealy machine from Figure 1, which can be viewed as adding 1 in

binary. Intuitively, this machine is clearly invertible because binary addition is an invertible op-

eration, its inverse being subtraction. If we call this machine M, then the group of M, denoted

G(M), is generated by two automata (and their inverses) – one automaton with an initial state

of q0, and another automaton with an initial state of q1, which turns out to be the identity

automaton (Figure 4).

7

q0 q1

1/0

0/1

0/0, 1/1

(i) A version of M with initial
state q0

q0 q1

1/0

0/1

0/0, 1/1

(ii) A version of M with
initial state q1

Figure 4: The automata created by considering multiple possible initial states for M from
Figure 1. The machine on the left is an exact copy of M. The machine on the right has q1
as its initial state. It maps 0 to 0 and 1 to 1; therefore, it’s the trivial automaton.

q−1
0 q−1

1

0/1

1/0

0/0, 1/1

Figure 5: The inverse of M, which represents binary subtraction by 1. For example, consider
the input 00101, which will be transformed into 11001. 00101, read backwards, represents
20 in decimal; 11001, read from backwards, represents 19 = 20− 1 in decimal.

Using the inversion procedure described above, we can construct the inverse of M (Figure

5), which, intuitively, should represent binary subtraction by 1. At this point, we’ve found

at least three elements in G(M): M,M−1, and the identity automaton. If we create a new

automaton Mn by composing n copies of M, this new machine represents addition by n in

binary. Similarly, if we create a new automaton (M−1)n by composing n copies of M−1, this

new machine represents subtraction by n in binary. This group is infinite cyclic, because it’s

isomorphic to the integers.

4.2 A Classification Problem

Consider all possible (invertible) Mealy machines one could create given two states and an al-

phabet containing two letters, 0 and 1. We will associate an output function with each state.

One of the states will be associated with identity function Id. The other state will be associated

with ϵ, which flips the input, mapping 0 to 1 and 1 to 0.

We can encode each state of these machines using the following notation. Suppose that in state

qi, an input of 0 sends the machine to qj and an input of 1 sends the machine to qk. Let t be the

output function associated with state qi. We can represent qi compactly by writing qi = (qj , qk)t.

(Throughout this paper, I’ll use the the notation gqi to represent the transition function over

state qi, so that qi = (gqi(0), gqi(1))t). For example, consider the binary addition machine in

Figure 1. State q0 corresponds to ϵ and state q1 corresponds to Id. We could encode the binary

8

adder by writing q0 = (q1, q0)ϵ and q1 = (q1, q1) Id.

It turns out that this rather strange notation is motivated by a concept from group theory: the

wreath product.

Definition 4.1. Let G be a finitely-generated group, and let Sd be the symmetric group acting

on the set D = {0, 1, . . . , d−1}. We define the wreath product G ≀DSd as a group that consists

of pairs of the form (g, σ), where:

• g maps from G to D. Furthermore, there are finitely many elements x ∈ G for which

g(x) ̸= idG. That is, g(y) = idG for all choices of y barring a finite number of exceptions.

• σ ∈ Sd, i.e., σ is a permutation that acts on D.

Within the wreath product, we define the multiplication of two elements as follows

(g1, σ1)(g2, σ2) = (g3, σ1σ2)

where g3(x) = g1(x)g2(σ1(x)).

As a matter of convention, we will write elements of the wreath product in the following form,

rather than in the (g, σ) pair form given in the definition. Suppose g(0) = a0, g(1) = a1, . . . ,

g(d− 1) = ad−1. Then we would represent the pair (g, σ) as (a0, a1, . . . , ad−1)σ. This is exactly

the notation described above to encode each of state of a machine!

The notion of wreath composition is useful for proving the following theorem.

Theorem 4.1. There are exactly six groups generated by two-state automata over two letters:

1. The trivial group

2. Z/2Z, the group of order 2

3. Z2 ⊕ Z2, the Klein four-group

4. Z, the infinite cyclic group

5. D∞, the infinite dihedral group

6. (⊕ZZ/2Z)⋊ Z, the lamplighter group

Proof. Consider an arbitrary two-state machine M. Call its states a and b. We proceed by

casework on a and b.

First, suppose a = b. If the label on the state is Id, then the corresponding group is the trivial

group. If the label on the state is ϵ, then the machine “flips” each bit (Figure 6). It’s clear that

this machine is its own inverse, so the group generated by this machine is Z/2Z, the group of

order 2.

9

a

0/1, 1/0

Figure 6: The machine where a = b and the output function is ϵ.

Now consider the case where a ̸= b. Without loss of generality, suppose a corresponds to the

output function Id, and b corresponds to the output function ϵ. Then either a = (a, a) Id or

a = (a, b) Id or a = (b, a) Id or a = (b, b) Id, and either b = (a, a)ϵ or b = (a, b)ϵ or b = (b, a)ϵ or

b = (b, b)ϵ.

Case 1: a = (a, a) Id. If this is the case, then there are four possible automata, depicted in

Figure 7. Consider the group generated by each possible machine.

Case 1.i: a = (a, a) Id and b = (a, a)ϵ. Then Ma is the identity machine, and Mb is the

machine that flips the first bit of an input, then copies the rest of the input. Mb is its

own inverse, so G(M) is isomorphic to Z/2Z.

Case 1.ii: a = (a, a) Id and b = (a, b)ϵ. Then Ma is the identity machine, and Mb is

the binary adder described previously. We already described the group corresponding to

G(M) – it’s the infinite cyclic group, Z.

Case 1.iii: a = (a, a) Id and b = (b, a)ϵ. Then Ma is the identity machine, and Mb is the

inverse of the binary adder described previously (i.e., it is the binary subtractor). Thus

G(M) is the infinite cyclic group, Z.

Case 1.iv: a = (a, a) Id and b = (b, b)ϵ. Then Ma is the identity machine, and Mb flips

each bit in its input. Clearly, Mb is its own inverse, so G(M) is Z/2Z.

Case 2: a = (a, b) Id. If this is the case, then there are four possible automata, depicted in

Figure 8.

Case 2.i: a = (a, b) Id and b = (a, a)ϵ. First, notice that a and b both have order 2.

Clearly, a2 = (a2, b2). Since b has the output function ϵ, b2 will have the output function

Id. We compute gb2 below:

gb2(0) = gb(0)gb(ϵ(0)) = gb(0)gb(1) = a2

gb2(1) = gb(1)gb(ϵ(1)) = gb(1)gb(0) = a2

Therefore, b2 = (a2, a2). Both a2 and b2 act trivially on any word, so the order of both a

10

a b

1/1, 0/0

0/1, 1/0

(i) b = (a, a)ϵ

a b

1/1, 0/0

0/1

1/0

(ii) b = (a, b)ϵ

a b

1/1, 0/0

1/0

0/1

(iii) b = (b, a)ϵ

a b

1/1, 0/0 0/1,1/0

(iv) b = (b, b)ϵ

Figure 7: All possible automata where a = (a, a) Id

and b is 2.

Now, consider the element a−1b = ab since a−1 = a. The output function over a−1b is ϵ,

and we can compute ga−1b:

ga−1b(0) = gab(0) = ga(0)gb(0) = a2 = 1

ga−1b(1) = gab(1) = ga(1)gb(1) = ba

So a−1b = (1, ba)ϵ. What is the order of this element? Clearly, it cannot be odd, because

for any n ∈ N, (a−1b)2n+1 would have the output function ϵ2n+1 = ϵ ̸= Id. Now consider

whether the order of a−1b could be even. Notice that (a−1b)2 = (ba, ba):

g(ab)2(0) = gab(0)gab(ϵ(0)) = gab(0)gab(1) = ba

g(ab)2(1) = gab(1)gab(ϵ(1)) = gab(1)gab(0) = ba

Also, ba = (a−1b)−1, so ba and a−1b should have the same order. Suppose the order of

ab is 2n for some integer n. Then (a−1b)2n = ((ba)n, (ba)n) is the identity. But then this

implies that n = 2n, which only holds for n = 0. The order of a group element must be

positive, so a−1b must have infinite order. Given the fact that |a| = |b| = 2 and a−1b has

infinite order, G(M) is the infinite dihedral group.

Case 2.ii: a = (a, b) Id and b = (a, b)ϵ. It can be shown that in this case, the group

generated corresponds to the lamplighter group, (⊕ZZ/2Z) ⋊ Z. I will not go into detail

about the lamplighter group in this paper.

Case 2.iii: a = (a, b) Id and b = (b, a)ϵ. Similar to Case 2.ii, it can be shown that the

group generated in this case corresponds to the lamplighter group, (⊕ZZ/2Z)⋊ Z.

11

Case 2.iv: a = (a, b) Id and b = (b, b)ϵ. First, we show that both a and b have order 2.

The output function for b2 is ϵ2 = Id, and we can also see that gb2(x) = b2 for all x

gb2(0) = gb(0)gb(ϵ(0)) = gb(0)gb(1) = b2

gb2(1) = gb(1)gb(ϵ(1)) = gb(1)gb(0) = b2

So b2 = (b2, b2) Id is the identity, implying that |b| = 2. Similarly, the output function for

a2 is Id, and we can determine ga2(x):

ga2(0) = ga(0)ga(0) = a2

ga2(1) = ga(1)ga(1) = b2

Therefore, a2 = (a2, b2) Id. If the machine starts in a2, it will process any word in the

same manner that it would be processed if the machine had started in state b2. Thus,

a2 = b2, i.e., |a| = 2.

Now consider the element a−1b, which has output function ϵ. a−1 = a since |a| = 2. We

can determine ga−1b:

ga−1b(0) = ga(0)gb(0) = ab = a−1b

ga−1b(1) = ga(1)gb(1) = b2 = 1

Therefore, a−1b = (a−1b, 1)ϵ. Set x = a−1b. We now determine the order of x. x cannot

have odd order, since the output function for x2n+1 is ϵ2n+1 = ϵ ̸= Id for all n. Suppose x

has even order. Notice that x2 = (x, x):

gx2(0) = gx(0)gx(ϵ(0)) = a−1b = x

gx2(1) = gx(1)gx(ϵ(1)) = a−1b = x

Therefore, for all n, x2n = (xn, xn). Suppose x has order 2k. Then x2k = (xk, xk) is the

identity. But then this would imply that x actually has order k. The only possible value

for k is 0, but order must be positive, so x = a−1b must not have finite order. Given that

a−1b has infinite order and |a| = |b| = 2, G(M) = ⟨a, b⟩ is the infinite dihedral group.

Case 3: a = (b, a) Id. This case is equivalent to Case 2 if we swap 0s and 1s.

Case 4: a = (b, b) Id. If this is the case, then there are four possible automata, depicted in

Figure 9.

Case 4.i: a = (b, b) Id and b = (a, a)ϵ. Then Ma is the machine that flips every other bit,

starting with the second bit and Mb is the machine that flips every other bit, starting

with the first bit. Ma is its own inverse and Mb is its own inverse. Composing them in

12

a b

0/0

1/1

0/1, 1/0

(i) b = (a, a)ϵ

a b

0/0

1/1

0/1

1/0

(ii) b = (a, b)ϵ

a b

0/0

1/1

1/0

0/1

(iii) b = (b, a)ϵ

a b

0/0

1/1

0/1,1/0

(iv) b = (b, b)ϵ

Figure 8: All possible automata where a = (a, b) Id

either order gives the machine which flips every bit of the inputted word; this machine is

its own inverse. G(M) is therefore the Klein four-group, Z2 ⊕ Z2, because

G(M) = ⟨Ma,Mb | M2
a = M2

b = (MaMb)
2 = e⟩.

Case 4.ii: a = (b, b) Id and b = (a, b)ϵ. First, we compute ab and ba. The output function

for both ab and ba will be ϵ, but what about the transition functions gab and gba? We can

determine each function explicitly:

gab(0) = ga(0)gb(0) = ba

gab(1) = ga(1)gb(1) = b2

gba(0) = gb(0)ga(ϵ(0)) = gb(0)ga(1) = ab

gba(1) = gb(1)ga(ϵ(1)) = gb(1)ga(0) = b2

So ab = (ba, b2)ϵ and ba = (ab, b2)ϵ. It turns out that these elements are the same, i.e.,

that a and b commute. We can see that ab = ba by considering how each state would

transform any possible word. For a word consisting entirely of 1s, it’s clear that the word

will be transformed into all 0s regardless of whether the machine starts in state ab or

ba, because it will toggle back and forth between ab and ba, which both have the output

function ϵ. Now consider an input word containing at least one 0. The word is prefixed

by some number of 1s (possibly zero). While processing the 1s, the machine (whether

it starts in state ab or ba) will toggle back and forth between ab and ba, outputting 1s.

When the reaches the first 0 in the input word, it will output a 1 and transition to state

b2. At that point, the rest of the word will be processed the same, regardless of whether

the machine started in state ab or ba. Therefore, for all possible words, we’ve shown that

13

ab = ba, i.e., that a and b commute.

Also remark that b2a is the identity because its output function is ϵ2 = Id and its next

state is b2a regardless of input:

gb2a(0) = gb(0)gba(ϵ(0)) = gb(0)gba(1) = ab2 = b2a

gb2a(1) = gb(1)gba(ϵ(1)) = gb(1)gba(0) = b(ab) = b2a

Since b2a is the identity, b2 = a−1. We now deduce the order of b. b must have either

finite or infinite order. By way of contradiction, suppose that b has finite order. Then

the order of b must be odd or even. b cannot have odd order because for any n ∈ N, the
output function for b2n+1 will be ϵ2n+1 = ϵ ̸= Id. So if b has finite order, it must have

even order. But this also leads to a contradiction. Suppose the order of b is 2n for some

n ∈ N. Then (b2)n = (a−1)n = e, so |a−1| = |a| = n = |b|
2 . Since a = (b, b), it follows that

an = (bn, bn), which must be the identity since |a| = n. But this would imply that n = 2n,

which is only possible for n = 0. However, order must be positive, so this is impossible.

Therefore, the order of b cannot be finite, so it is infinite. So we have G(M) = ⟨a, b⟩ = ⟨b⟩
since (b−1)2 = a. Since we have shown that b has infinite order, G(M) is therefore the

infinite cyclic group.

Case 4.iii: a = (b, b) Id and b = (b, a)ϵ. This case is equivalent to Case 4.ii if we swap 0s

and 1s.

Case 4.iv: a = (b, b) Id and b = (b, b)ϵ. Then Ma is the machine that copies the first bit

of input and then flips all of the other bits. Mb flips every bit of input. Ma is its own

inverse and Mb is its own inverse. Composing them in either order results in a machine

that flips the first bit of input, then copies all other bits; this machine is its own inverse.

G(M) is therefore the Klein four-group, by the same reasoning used in Case 4.i.

In each case enumerated above, the group generated by M corresponded to one of six groups:

the trivial group, the group of order 2, the Klein four-group, the infinite cyclic group, the infinite

dihedral group, and the lamplighter group. Thus, we’ve classified all possible groups generated

by automata with two states and an input/output alphabet with two letters.

5 The Word Problem

Consider the generators of a finitely-generated group G. Consider any “word,” written as the

product of elements in the generating set and their inverses. The word problem is the problem of

determining in a finite number of steps whether or not this word represents the identity element.

It has been proven by Pyotr Novikov [6] and William Boone [2] that in general, the word problem

is undecidable. Remarkably, the word problem is solvable for groups generated by automata.

Theorem 5.1. The word problem is solvable for groups generated by automata.

14

a b

0/0, 1/1

0/1, 1/0

(i) b = (a, a)ϵ

a b

0/0, 1/1

0/1

1/0

(ii) b = (a, b)ϵ

a b

0/0, 1/1

1/0

0/1

(iii) b = (b, a)ϵ

a b
0/0, 1/1

0/1,1/0

(iv) b = (b, b)ϵ

Figure 9: All possible automata where a = (b, b) Id

Proof. Consider an arbitrary invertible automaton A. For each state q ∈ Q, the state set of A,

consider the automaton Aq with initial state q. Also consider this machine’s inverse, (Aq)
−1.

Use a minimization algorithm to minimize Aq and (Aq)
−1 into corresponding minimized ma-

chines, denoted Mq and (Mq)
−1, respectively. Let C represent the maximum number of states

in Mq and (Mq)
−1 for each q ∈ Q. Consider any word w = Lq1 ◦ . . . ◦ Lqn ∈ G(A) where each

Lqi ∈ {Aq | q ∈ Q} or (Lqi)
−1 ∈ {Aq | q ∈ Q}. Then this word can be written equivalently as

w = Nq1 ◦ . . . · Nqn where each Nqi ∈ {Mq | q ∈ Q} or (Nqi)
−1 ∈ {Mq | q ∈ Q}. Then w has at

most Cn states (i.e., it has a finite number of states).

Suppose w is trivial, i.e., for any inputted word v, the output under w is also v. Then for every

state r reachable from the initial state, it must be the case that the output function λ(r, x) = x

for all x ∈ Σ, the input/output alphabet.

Now suppose that for every state r reachable from the initial state, the output function λ(r, x) =

x for all x ∈ Σ. Then w acts trivially on any word in Σ∗, i.e., w is trivial.

Thus, we’ve established a way to determine whether a word in G(A) is trivial, so the word

problem is solvable in G(A).

6 Acknowledgements

I am very grateful for my advisors for this project, Andrew Bridy and Anna Gilbert. I would

also like to thank Igor Frenkel, who taught me in MATH 350 last semester.

15

References

[1] Laurent Bartholdi and Pedro V. Silva. “Groups defined by automata”. In: CoRR abs/1012.1531

(2010). arXiv: 1012.1531. url: http://arxiv.org/abs/1012.1531.

[2] WilliamW. Boone. “The word problem”. In: Proceedings of the National Academy of Sciences

44.10 (1958), pp. 1061–1065. doi: 10.1073/pnas.44.10.1061.

[3] R. Grigorchuk, Volodymyr Nekrashevych, and V. Sushchanskii. “Automata, dynamical

systems, and groups”. In: Proceedings of the Steklov Institute of Mathematics 231 (Jan.

2000), pp. 128–203.

[4] Rostislav Grigorchuk and Andrzej Żuk. Automata groups, their spectra and classification.

[5] John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. 1971.

url: http://i.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf.

[6] P. S. Novikov. “Algorithmic Unsolvability of the Word Problem in Group Theory”. In:

Journal of Symbolic Logic 23.1 (1958), pp. 50–52. doi: 10.2307/2964487.

16

https://arxiv.org/abs/1012.1531
http://arxiv.org/abs/1012.1531
https://doi.org/10.1073/pnas.44.10.1061
http://i.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf
https://doi.org/10.2307/2964487

	Introduction
	Group Theory Background
	Automata Theory Background
	Group Theory Meets Automata Theory
	A First Example
	A Classification Problem

	The Word Problem
	Acknowledgements
	References

