CS 201 midterm review

10/7/18

Juliana Viola

What topics should we go over?

55 responses

car/cdr recursion 12 (21.8%)
deep recursion 40 (72.7%)
Turing machines 20 (36.4%)
Boolean functions 34 (61.8%)

UNIX 43 (78.2%)

tail recursion 2 (3.6%)

con / append / list / list* 1(1.8%)

0 5 10 15 20 25 30 35 40 45 50 55

Agenda

How to get better at UNIX

cons Vvs. append

Deep recursion (review 1ambda functions)
Boolean functions

Turing machines (review let)

Time permitting: more questions!

Sl S

Please interrupt at any time with
qguestions or suggestions :)

UNIX

How can | get better at UNIX?

1) UNIX tutorial on the Zoo! ssh into the Zoo; then in your home folder, type the
following command: python3 /c/cs201/www/unixtutorial.py

2) Practice typing commands on the Zoo

General tips:

* Be familiar with the output of each command (important in context of the
transcript!)

Any specific UNIX questions?

cons Vvs. append

First, a note on pairs vs. lists...

From the Racket guide:

* “A pair combines exactly two values.”
 “Alistis recursively defined: it is either the constant null, oritis a
pair whose second value is a list.”

(list v ...) — 1list? procedure

v : any/c
Returns a newly allocated list containing the vs as its elements.

> Llist 1. 2.3 4)
'{1.2 3.4)

COIlS

(cons a d) — pair? procedure
a . any/c
d : any/c

Returns a newly allocatec @ hose first element is a and second element is 4.

A[] (cons 1 2) returnsthepair (1 . 2)
This pair is not a list because the cdr is not null!

If you want to construct thelist * (1 2), use
(cons 1 (cons 2 ‘())) or

(cons 1 ‘'(2)) or

(cons 1 (list 2))

cons continued

In general, here is how | use/conceptualize cons to return a list (not merely a pair):
 Let a be any data type; let b be a list
* (cons a b) inserts a as the first element of the list b

Examples:

= Leons. 1 "))

‘(1)

> (cons 'apple '(banana cranberry))
'(apple banana cranberry)

= ficons "1 2) (ldst 3 4))
(el 203 4)

Key takeaway:

The second argument for cons should almost
always be a list (unless you want to return a pair);
the first argument can be whatever you want and
will be inserted as the first element of the list

supplied

append

(append Ist ...) — list? procedure

lst : list?

(append Ist ... v) — any/c
Ist : list?
v : any/c

When given all list arguments, the result is a list that contains all of the elements of the
given lists in order. The last argument is used directly in the tail of the result.

The last argument need not be a list, in which case the result is an “improper list.”

In general, here is how | use/conceptualize append to return a list:
* Letaandb be lists
* (append a b) essentially merges the lists a and b

> (append '(1) '())

(1)

> (append '(apple) '(banana cranberry))
' (apple banana cranberry)

> ?append ({1 2)) '(3 4))
"{(1.2) 3 4)

Key takeaway:
Generally speaking, all arguments for
append should be lists (unless you want

to return an improper list)

s (cons 1 "()) > (append '(1) '())

|(1) '(Il)

> (cons 'apple '(banana cranberry)) > (append ‘(apple) '(banana cranberry))
'(apple banana cranberry) ‘(apple banana cranberry)

= fcons “{1 2y [(list 3 4)) > (append '((1 2)) '(3 4))

i1 2y 3 3) N(1'2) 3 4)

Questions?

Practice with cons vs. append

1. (cons 1 2)

2. (cons 1 ‘())

3. (cons 1 '(2))

4. (cons ‘(1) 2)

5. (cons ‘(1) ‘(2))

6. (append ‘(1) '‘(2))

7. (append *((1)) *((2)))

8. Definemy-1lsttobe * (hello “hi” #t 7).

a. How would you use cons to get thelist * (1 hello “hi” #t 7)7
b. How would you use append to getthelist * (1 hello “hi” #t 7)7

Solutions

1. (cons 1 2) => ‘(1 . 2)
2. (cons 1 ‘()) => ‘(1)
3. (cons 1 '(2)) => ‘(1 2)
4. (cons ‘(1) 2) => ‘((1) . 2)
5. (cons ‘(1) ‘(2)) => ‘((1) 2)
6. (append ‘(1) ‘'(2)) => ‘(1 2)
7. (append ' ((1)) ‘((2))) => ' ((1) (2))
8. Definemy-1lsttobe * (hello “hi” #t 7).
a. How would you use cons to get thelist * (1 hello “hi” #t 7)7?=>

(cons 1 my-1lst)
How would you use append to getthelist * (1 hello “hi” #t 7)7?
=> (append ‘(1) my-1lst)

o

Deep recursion

Practice with deep recursion

Write a procedure
(count-if pred tree)
which returns the number of leaves of the tree that satisfy the given predicate pred
Examples

count-if odd? '(1 2 3)) => 2

count-if even? '(1 2 3))
count-if integer? '(1 (2

(
)) => 0

(

(

(

(count-1if string? ' (
(count-1if even? " ((((((8
(

8
count-if (lambda (x) (> X

Quick review: what is a 1ambda function?

A lambda expression creates a function. In the simplest case, a lambda expression has the
form

(lambda (arg-id ...)
body ...+)

Example; > ((lambda (x y) (+ x y)) 17 4)
21

> (define (add-x-to-y x y) (+ x y))
> (add-x-to-y 17 4)
21

Back to deep recursion...

Write a procedure
(count-if pred tree)
which returns the number of leaves of the tree that satisfy the given predicate pred
Examples

count-if odd? '(1 2 3)) => 2

count-if even? '(1 2 3))
count-if integer? '(1 (2

(
)) => 0

(

(

(

(count-1if string? ' (
(count-1if even? " ((((((8
(

8
count-if (lambda (x) (> X

Back to deep recursion...

Write a procedure

(count-if pred tree)

which returns the number of leaves of the tree that satisfy the given predicate pred
Examples

(count-1if odd? '(1 2 3)) => 2
(count-if even? '(1 2 3)) =
(count-1if integer? '(1 (2 (
(count-if string? '()) => 0
(count-1if even? " ((((((8
(

8 8
count-if (lambda (x) (> x 5)) '"((((((9 9 9))))))) => 3

Sample solution

(define (count-if pred tree)
(cond [(empty? tree) O]
[(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
[(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
[

else (count-if pred (rest tree))]l))

Sample solution

(define (count-if pred tree)
(cond [(empty? tree) O]
[(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
[(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
[

else (count-if pred (rest tree))]l))

Questions? Comments? Do you
agree or disagree?

Sample solution

(define (count-if pred tree)
(cond [(empty? tree) O]
[(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
[(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
[else (count-if pred (rest tree))]))

Questions? Comments? Do you
agree or disagree?

Time to draw a tree of recursive calls
(count-if (lambda (x) (and (negative? x) (odd? x))) '(((-13) 4) (-57) 6))

A

Sample tree of recursive calls

(count-if odd-and-negative? '(((-13) 4) (-57) 6)) -->2
i S
O £

(+>(count-if odd-and-negative? '((-13) 4)) (coﬁﬁt—if odd-and-negative? '((-57) 6))) -—>2
./

s Sy S

(+ 1 (count-if odd-and-negative? '())) (count-if odd-and-negative? '()) _sg (+ 1 (count-if odd-and-negative?

| \ "u

0 0 0

\.1 E\

1<- (+ (count-if odd-and-negative? '(-13)) (count-if odd-and-negative? '(4))) (+ (count-if odd-and-negative? '(-57)) (count-if odd-and-negative?

"))t

N

(count-if odd-and-negative?

\

\

\

0

'(6)))

—59

6

>0

Boolean functions

Key ideas

* Truth tables
* QOperations:
e and *
° or+
* not'
 Sum of products algorithm

Truth table example — write an expression for
f(x y Z) How | approach truth tables:
7))

H
N

= R R [o o (@) o M
[= o o [[o o <

P
[[[o (- o o o :<

— o = o - o = o N

Truth table example — write an expression for

f(X,y,Z) How .I approach truth table§:
1. Find all the true values in the output
x y z f(x,y,z) column
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 @
1 0 0 0
1 0 1
1 1 0 8
1 1 1 @

Truth table example — write an expression for

f(X,y,Z) How .I approach truth table§:
1. Find all the true values in the output
x y z f(x,y,z) column
0 0 0 0 2. Write Boolean expressions for the
. . . . corresponding rows
0 1 0 0
0 1 1 @ X *y*z
1 0 0 0
1 0 1 X*Y’*Z
1 1 0 8 x*y*z’
1 1 1 @ x*y*z

Truth table example — write an expression for

f(x,y,z)

X

f(x,vy,2z)

O
3
®

X' *y*z

x*y'*z
x*y*z7’

x*y*z

How | approach truth tables:

1. Find all the true values in the output
column

2. Write Boolean expressions for the
corresponding rows

3. Add these expressions together to get
your final sum of products:

(X Fy*z)+(xFy *z)+(x*y*Z’) +(x*y*z)

Hooray! You're done! You’'ve written a
Boolean expression for f(x,y,z) using the
sum-of-products algorithm

Equivalently:

(x*y)+(y*z)+(x*2)
Can you see why this is true?

Practice with truth tables — write an
expression for f(x,y,z)

h
s
9

= R R [o o (@) o M
[= o o = = o o <
[o = o = o = o
o o = = o B o [

Practice with truth tables — write an
expression for f(x,y,z)

h
s
9

Solution:
(CHY 52)+ Y2)Y 2 ey *2)

= R R [o o (@) o M
[= o o = = o o <
[o = o [o = o N
o o = = o B o [

Turing machines

First, a quick review of 1et — what is it good for?

A let form binds a set of identifiers, each to the result of some expression, for use in the
let body:

(let ([id expr] ...) body ...+)

First, a quick review of 1et — what is it good for?

A let form binds a set of identifiers, each to the result of some expression, for use in the

let body:

Eet ([id expr] ...) body ...+)

(define (next-config mach config)
E | f h 3 k . (if (halted? mach config)
Xamp e rom my W .r t. config
(let ([my-ins (i-lookup (conf-state config)
(conf-symbol config)
mach)])
(if (equal? (ins—dir my-ins) 'L)
(shift-head-left (change-state (ins-n-state my-ins)
(write-symbol (ins-n-symbol my-ins)
config)))
(shift-head-right (change-state (ins-n-state my-ins)
(write-symbol (ins—-n-symbol my-ins)
config)))))))

What's the advantage here?

Think/pair/share — what is this Turing
machine doing?

(define tm-mystery
(list (ins 'gl 0 'gl 0 'R)
ins 'gl 1 'gl 1 'R)
ins 'gl 'b 'g2 'b 'L)

(Assume inputs will be >=1 in binary)

ins 'g2 0 'g3 1
ins 'g2 1 'g4 0 !
ins 'g3 0 'g3 1 '

ins 'g3 'b 'g5s 'b 'R)
ins 'g4 0 'g4 0'L)
ins 'g4 1 'g4 1 'L)

(
(
(
(
(
(ins 'g3 1 'g4 0 !
(
(
(
(ins 'g4 'b 'g5s 'b 'R)))

Solution

Subtract 1 from the n-bit input; the output is n-bit difference

Examples:
1=>0

10 =>01
11 =>10
100 => 011

Questions?

