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Agenda

1. How to get better at UNIX
2. cons vs. append
3. Deep recursion (review lambda functions)
4. Boolean functions
5. Turing machines (review let)
6. Time permitting: more questions!

Please interrupt at any time with 
questions or suggestions :)



UNIX



How can I get better at UNIX?

1) UNIX tutorial on the Zoo! ssh into the Zoo; then in your home folder, type the 
following command: python3 /c/cs201/www/unixtutorial.py

2) Practice typing commands on the Zoo

General tips:

• Be familiar with the output of each command (important in context of the 
transcript!)



Any specific UNIX questions?



cons vs. append



First, a note on pairs vs. lists...

From the Racket guide:

• “A pair combines exactly two values.”
• “A list is recursively defined: it is either the constant null, or it is a 

pair whose second value is a list.”



⚠� (cons 1 2) returns the pair ‘(1 . 2)
This pair is not a list because the cdr is not null!

If you want to construct the list ‘(1 2), use 
(cons 1 (cons 2 ‘())) or 
(cons 1 ‘(2)) or 
(cons 1 (list 2))

cons



cons continued

In general, here is how I use/conceptualize cons to return a list (not merely a pair):
• Let a be any data type; let b be a list
• (cons a b) inserts a as the first element of the list b

Examples:



Key takeaway:
The second argument for cons should almost 
always be a list (unless you want to return a pair); 
the first argument can be whatever you want and 
will be inserted as the first element of the list 
supplied



append

In general, here is how I use/conceptualize append to return a list:
• Let a and b be lists
• (append a b) essentially merges the lists a and b



Key takeaway:
Generally speaking, all arguments for 
append should be lists (unless you want 
to return an improper list)





Questions?



Practice with cons vs. append

1. (cons 1 2)
2. (cons 1 ‘())
3. (cons 1 ‘(2))
4. (cons ‘(1) 2)
5. (cons ‘(1) ‘(2))
6. (append ‘(1) ‘(2))
7. (append ‘((1)) ‘((2)))
8. Define my-lst to be ‘(hello “hi” #t 7). 

a. How would you use cons to get the list ‘(1 hello “hi” #t 7)?
b. How would you use append to get the list ‘(1 hello “hi” #t 7)?



Solutions

1. (cons 1 2) => ‘(1 . 2)
2. (cons 1 ‘()) => ‘(1)
3. (cons 1 ‘(2)) => ‘(1 2)
4. (cons ‘(1) 2) => ‘((1) . 2)
5. (cons ‘(1) ‘(2)) => ‘((1) 2)
6. (append ‘(1) ‘(2)) => ‘(1 2)
7. (append ‘((1)) ‘((2))) => ‘((1) (2))
8. Define my-lst to be ‘(hello “hi” #t 7). 

a. How would you use cons to get the list ‘(1 hello “hi” #t 7)? => 
(cons 1 my-lst)

b. How would you use append to get the list ‘(1 hello “hi” #t 7)? 
=> (append ‘(1) my-lst)



Deep recursion



Practice with deep recursion
Write a procedure

(count-if pred tree)

which returns the number of leaves of the tree that satisfy the given predicate pred

Examples

 

(count-if odd? '(1 2 3)) => 2

(count-if even? '(1 2 3)) => 1

(count-if integer? '(1 (2 (3)))) => 3

(count-if string? '()) => 0

(count-if even? '((((((8 8 8))))))) => 3

(count-if (lambda (x) (> x 5)) '((((((9 9 9))))))) => 3



Quick review: what is a lambda function?

Example:



Back to deep recursion...
Write a procedure

(count-if pred tree)

which returns the number of leaves of the tree that satisfy the given predicate pred

Examples

 

(count-if odd? '(1 2 3)) => 2

(count-if even? '(1 2 3)) => 1

(count-if integer? '(1 (2 (3)))) => 3

(count-if string? '()) => 0

(count-if even? '((((((8 8 8))))))) => 3

(count-if (lambda (x) (> x 5)) '((((((9 9 9))))))) => 3



Back to deep recursion...
Write a procedure

(count-if pred tree)

which returns the number of leaves of the tree that satisfy the given predicate pred

Examples

 

(count-if odd? '(1 2 3)) => 2

(count-if even? '(1 2 3)) => 1

(count-if integer? '(1 (2 (3)))) => 3

(count-if string? '()) => 0

(count-if even? '((((((8 8 8))))))) => 3

(count-if (lambda (x) (> x 5)) '((((((9 9 9))))))) => 3

Think/pair/share



Sample solution

(define (count-if pred tree)
  (cond [(empty? tree) 0]
        [(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
        [(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
        [else (count-if pred (rest tree))]))



Sample solution

(define (count-if pred tree)
  (cond [(empty? tree) 0]
        [(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
        [(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
        [else (count-if pred (rest tree))]))

Questions? Comments? Do you 
agree or disagree?



Sample solution

(define (count-if pred tree)
  (cond [(empty? tree) 0]
        [(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
        [(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
        [else (count-if pred (rest tree))]))

Questions? Comments? Do you 
agree or disagree?

Time to draw a tree of recursive calls
(count-if (lambda (x) (and (negative? x) (odd? x))) '(((-13) 4) (-57) 6))



Sample tree of recursive calls



Boolean functions



Key ideas

• Truth tables
• Operations:

• and *
• or + 
• not ‘

• Sum of products algorithm



Truth table example – write an expression for 
f(x,y,z)

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:



Truth table example – write an expression for 
f(x,y,z)

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:
1. Find all the true values in the output 

column



Truth table example – write an expression for 
f(x,y,z)

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

x’*y*z

x*y’*z

x*y*z’

x*y*z

How I approach truth tables:
1. Find all the true values in the output 

column
2. Write Boolean expressions for the 

corresponding rows



Truth table example – write an expression for 
f(x,y,z)

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:
1. Find all the true values in the output 

column
2. Write Boolean expressions for the 

corresponding rows
3. Add these expressions together to get 

your final sum of products:
(x’*y*z)+(x*y’*z)+(x*y*z’)+(x*y*z)

Hooray! You’re done! You’ve written a 
Boolean expression  for f(x,y,z) using the 

sum-of-products algorithm

Equivalently:
(x*y)+(y*z)+(x*z)

Can you see why this is true?

x’*y*z

x*y’*z

x*y*z’

x*y*z



Practice with truth tables – write an 
expression for f(x,y,z)

x y z f(x,y,z)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0



Practice with truth tables – write an 
expression for f(x,y,z)

x y z f(x,y,z)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Solution:
(x’*y’*z’)+(x’*y*z’)+(x*y’*z’)+(x*y’*z)



Turing machines



First, a quick review of let – what is it good for?



First, a quick review of let – what is it good for?

Example from my hw3.rkt:

What’s the advantage here?



Think/pair/share – what is this Turing 
machine doing?
(define tm-mystery

  (list (ins 'q1 0 'q1 0 'R)
        (ins 'q1 1 'q1 1 'R)
        (ins 'q1 'b 'q2 'b 'L)
        (ins 'q2 0 'q3 1 'L)
        (ins 'q2 1 'q4 0 'L)
        (ins 'q3 0 'q3 1 'L)
        (ins 'q3 1 'q4 0 'L)
        (ins 'q3 'b 'q5 'b 'R)
        (ins 'q4 0 'q4 0'L)
        (ins 'q4 1 'q4 1 'L)
        (ins 'q4 'b 'q5 'b 'R)))

(Assume inputs will be >= 1 in binary)



Solution

Subtract 1 from the n-bit input; the output is n-bit difference

Examples:

1 => 0

10 => 01

11 => 10

100 => 011



Questions?


