
CS 201 midterm review
10/7/18

Juliana Viola

Agenda

1. How to get better at UNIX
2. cons vs. append
3. Deep recursion (review lambda functions)
4. Boolean functions
5. Turing machines (review let)
6. Time permitting: more questions!

Please interrupt at any time with
questions or suggestions :)

UNIX

How can I get better at UNIX?

1) UNIX tutorial on the Zoo! ssh into the Zoo; then in your home folder, type the
following command: python3 /c/cs201/www/unixtutorial.py

2) Practice typing commands on the Zoo

General tips:

• Be familiar with the output of each command (important in context of the
transcript!)

Any specific UNIX questions?

cons vs. append

First, a note on pairs vs. lists...

From the Racket guide:

• “A pair combines exactly two values.”
• “A list is recursively defined: it is either the constant null, or it is a

pair whose second value is a list.”

⚠� (cons 1 2) returns the pair ‘(1 . 2)
This pair is not a list because the cdr is not null!

If you want to construct the list ‘(1 2), use
(cons 1 (cons 2 ‘())) or
(cons 1 ‘(2)) or
(cons 1 (list 2))

cons

cons continued

In general, here is how I use/conceptualize cons to return a list (not merely a pair):
• Let a be any data type; let b be a list
• (cons a b) inserts a as the first element of the list b

Examples:

Key takeaway:
The second argument for cons should almost
always be a list (unless you want to return a pair);
the first argument can be whatever you want and
will be inserted as the first element of the list
supplied

append

In general, here is how I use/conceptualize append to return a list:
• Let a and b be lists
• (append a b) essentially merges the lists a and b

Key takeaway:
Generally speaking, all arguments for
append should be lists (unless you want
to return an improper list)

Questions?

Practice with cons vs. append

1. (cons 1 2)
2. (cons 1 ‘())
3. (cons 1 ‘(2))
4. (cons ‘(1) 2)
5. (cons ‘(1) ‘(2))
6. (append ‘(1) ‘(2))
7. (append ‘((1)) ‘((2)))
8. Define my-lst to be ‘(hello “hi” #t 7).

a. How would you use cons to get the list ‘(1 hello “hi” #t 7)?
b. How would you use append to get the list ‘(1 hello “hi” #t 7)?

Solutions

1. (cons 1 2) => ‘(1 . 2)
2. (cons 1 ‘()) => ‘(1)
3. (cons 1 ‘(2)) => ‘(1 2)
4. (cons ‘(1) 2) => ‘((1) . 2)
5. (cons ‘(1) ‘(2)) => ‘((1) 2)
6. (append ‘(1) ‘(2)) => ‘(1 2)
7. (append ‘((1)) ‘((2))) => ‘((1) (2))
8. Define my-lst to be ‘(hello “hi” #t 7).

a. How would you use cons to get the list ‘(1 hello “hi” #t 7)? =>
(cons 1 my-lst)

b. How would you use append to get the list ‘(1 hello “hi” #t 7)?
=> (append ‘(1) my-lst)

Deep recursion

Practice with deep recursion
Write a procedure

(count-if pred tree)

which returns the number of leaves of the tree that satisfy the given predicate pred

Examples

(count-if odd? '(1 2 3)) => 2

(count-if even? '(1 2 3)) => 1

(count-if integer? '(1 (2 (3)))) => 3

(count-if string? '()) => 0

(count-if even? '((((((8 8 8))))))) => 3

(count-if (lambda (x) (> x 5)) '((((((9 9 9))))))) => 3

Quick review: what is a lambda function?

Example:

Back to deep recursion...
Write a procedure

(count-if pred tree)

which returns the number of leaves of the tree that satisfy the given predicate pred

Examples

(count-if odd? '(1 2 3)) => 2

(count-if even? '(1 2 3)) => 1

(count-if integer? '(1 (2 (3)))) => 3

(count-if string? '()) => 0

(count-if even? '((((((8 8 8))))))) => 3

(count-if (lambda (x) (> x 5)) '((((((9 9 9))))))) => 3

Back to deep recursion...
Write a procedure

(count-if pred tree)

which returns the number of leaves of the tree that satisfy the given predicate pred

Examples

(count-if odd? '(1 2 3)) => 2

(count-if even? '(1 2 3)) => 1

(count-if integer? '(1 (2 (3)))) => 3

(count-if string? '()) => 0

(count-if even? '((((((8 8 8))))))) => 3

(count-if (lambda (x) (> x 5)) '((((((9 9 9))))))) => 3

Think/pair/share

Sample solution

(define (count-if pred tree)
 (cond [(empty? tree) 0]
 [(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
 [(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
 [else (count-if pred (rest tree))]))

Sample solution

(define (count-if pred tree)
 (cond [(empty? tree) 0]
 [(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
 [(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
 [else (count-if pred (rest tree))]))

Questions? Comments? Do you
agree or disagree?

Sample solution

(define (count-if pred tree)
 (cond [(empty? tree) 0]
 [(list? (first tree)) (+ (count-if pred (first tree)) (count-if pred (rest tree)))]
 [(pred (first tree)) (+ 1 (count-if pred (rest tree)))]
 [else (count-if pred (rest tree))]))

Questions? Comments? Do you
agree or disagree?

Time to draw a tree of recursive calls
(count-if (lambda (x) (and (negative? x) (odd? x))) '(((-13) 4) (-57) 6))

Sample tree of recursive calls

Boolean functions

Key ideas

• Truth tables
• Operations:

• and *
• or +
• not ‘

• Sum of products algorithm

Truth table example – write an expression for
f(x,y,z)

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:

Truth table example – write an expression for
f(x,y,z)

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:
1. Find all the true values in the output

column

Truth table example – write an expression for
f(x,y,z)

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

x’*y*z

x*y’*z

x*y*z’

x*y*z

How I approach truth tables:
1. Find all the true values in the output

column
2. Write Boolean expressions for the

corresponding rows

Truth table example – write an expression for
f(x,y,z)

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:
1. Find all the true values in the output

column
2. Write Boolean expressions for the

corresponding rows
3. Add these expressions together to get

your final sum of products:
(x’*y*z)+(x*y’*z)+(x*y*z’)+(x*y*z)

Hooray! You’re done! You’ve written a
Boolean expression for f(x,y,z) using the

sum-of-products algorithm

Equivalently:
(x*y)+(y*z)+(x*z)

Can you see why this is true?

x’*y*z

x*y’*z

x*y*z’

x*y*z

Practice with truth tables – write an
expression for f(x,y,z)

x y z f(x,y,z)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Practice with truth tables – write an
expression for f(x,y,z)

x y z f(x,y,z)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Solution:
(x’*y’*z’)+(x’*y*z’)+(x*y’*z’)+(x*y’*z)

Turing machines

First, a quick review of let – what is it good for?

First, a quick review of let – what is it good for?

Example from my hw3.rkt:

What’s the advantage here?

Think/pair/share – what is this Turing
machine doing?
(define tm-mystery

 (list (ins 'q1 0 'q1 0 'R)
 (ins 'q1 1 'q1 1 'R)
 (ins 'q1 'b 'q2 'b 'L)
 (ins 'q2 0 'q3 1 'L)
 (ins 'q2 1 'q4 0 'L)
 (ins 'q3 0 'q3 1 'L)
 (ins 'q3 1 'q4 0 'L)
 (ins 'q3 'b 'q5 'b 'R)
 (ins 'q4 0 'q4 0'L)
 (ins 'q4 1 'q4 1 'L)
 (ins 'q4 'b 'q5 'b 'R)))

(Assume inputs will be >= 1 in binary)

Solution

Subtract 1 from the n-bit input; the output is n-bit difference

Examples:

1 => 0

10 => 01

11 => 10

100 => 011

Questions?

